MAFA missense mutation causes familial insulinomatosis and diabetes mellitus
نویسندگان
چکیده
The β-cell-enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in β-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in β-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet β-cell activity.
منابع مشابه
A Novel Mutation in Exon 4 of the Low Density Lipoprotein (LDL) Receptor Gene in an Iranian Familial Hypercholesterolemia Patient
Familial hypercholesterolemia (FH) is an autosomal co-dominant disorder of lipid metabolism, caused by mutations in LDL receptor gene. The penetrance of FH is almost 100%, meaning that half of the offspring of affected parents born with disease. The patients are at risk of premature coronary heart disease (CHD). There is no report about the molecular basis of FH in Iran. Identification of mutat...
متن کاملAssociation of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP)
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inheri...
متن کاملA Novel Missense Mutation in the ALDH13 Gene Causes Anophthalmia in Two Unrelated Iranian Consanguineous Families
Anophthalmia or microphthalmia (A/M) is a rare group of congenital/developmental ocular malformations, characterized by absent or small eye within the orbit affecting one or both eyes. It has complex etiology with chromosomal, monogenic with high heterogeneity, and environmental causes. We performed genome SNP-array analysis followed by autozygosity mapping and sequencing in the members o...
متن کامل[A case of familial insulin resistance due to type A insulin receptor disorder].
We report a case of familial insulin resistance due to Type A insulin receptor disorder. The patient, a product of consanguineous marriage, was a 34-year-old man who had had diabetes mellitus since the age of 14 years. He was treated by insulin therapy but became blind due to diabetic retinopathy at the age of 25 years. He was 154 cm tall and weighed 41kg. He had hirsutism and acanthosis nigric...
متن کاملMafA-deficient and beta cell-specific MafK-overexpressing hybrid transgenic mice develop human-like severe diabetic nephropathy.
Transcription factor MafA is a key molecule in insulin secretion and the development of pancreatic islets. Previously, we demonstrated that some of the MafA-deficient mice develop overt diabetes mellitus, and the phenotype of these mice seems to be mild probably because of redundant functions of other Maf proteins. In this study, we generated hybrid transgenic mice that were MafA-deficient and ...
متن کامل